首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18605篇
  免费   1792篇
  国内免费   2241篇
  2024年   27篇
  2023年   403篇
  2022年   498篇
  2021年   776篇
  2020年   889篇
  2019年   965篇
  2018年   833篇
  2017年   743篇
  2016年   765篇
  2015年   803篇
  2014年   1031篇
  2013年   1280篇
  2012年   813篇
  2011年   917篇
  2010年   630篇
  2009年   869篇
  2008年   840篇
  2007年   975篇
  2006年   870篇
  2005年   737篇
  2004年   693篇
  2003年   678篇
  2002年   580篇
  2001年   489篇
  2000年   454篇
  1999年   406篇
  1998年   395篇
  1997年   342篇
  1996年   330篇
  1995年   286篇
  1994年   261篇
  1993年   246篇
  1992年   234篇
  1991年   193篇
  1990年   190篇
  1989年   160篇
  1988年   142篇
  1987年   128篇
  1986年   122篇
  1985年   145篇
  1984年   95篇
  1983年   56篇
  1982年   86篇
  1981年   78篇
  1980年   37篇
  1979年   49篇
  1978年   28篇
  1977年   19篇
  1975年   16篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.  相似文献   
82.
  • There is growing interest in harnessing the genetic and adaptive diversity of crop wild relatives to improve drought resilience of elite cultivars. Rainfall gradients exert strong selection pressure on both natural and agricultural ecosystems. Understanding plant responses to these facilitates crop improvement.
  • Wild and domesticated narrow‐leafed lupin (NLL) collected along Mediterranean terminal drought stress gradients was evaluated under contrasting reproductive phase water supply in controlled field, glasshouse and cabinet studies. Plant phenology, growth and productivity, water use and stress responses were measured over time.
  • There is an integrated suite of adaptive changes along rainfall gradients in NLL. Low rainfall ecotypes flower earlier, accumulate lower seed numbers, biomass and leaf area, and have larger root:shoot ratios than high rainfall ecotypes. Water‐use is lower and stress onset slower in low compared to high rainfall ecotypes. Water‐use rates and ecotypic differences in stress response (Ψleaf decline, leaf loss) are lower in NLL than yellow lupin (YL). To mitigate the effects of profligate water use, high rainfall YL ecotypes maintain higher leaf water content over declining leaf water potential than low rainfall ecotypes. There is no evidence for such specific adaptation in NLL.
  • The data suggests that appropriate phenology is the key adaptive trait to rainfall gradients in NLL because of the flow‐on effects on biomass production, fitness, transpiration and stress onset, and the lack of physiological adaptations as in YL. Accordingly, it is essential to match phenology with target environment in order to minimize risk and maximize yield potential.
  相似文献   
83.
  • Highly biodiversity communities have been shown to better resist plant invasions through complementarity effects. Species richness (SR) is a widely used biodiversity metric but lacks explanatory power when there are only a few species. Communities with low SR can have a wide variety of phylogenetic diversities (PD), which might allow for a better prediction of invasibility.
  • We assessed the effect of diversity reduction of a wetland community assemblage typical of the Beijing area on biotic resistance to invasion of the exotic weed Alternanthera philoxeroides and compared the reduction in SR and PD in predicting community invasibility.
  • The eight studied resident species performed similarly when grown alone and when grown in eight‐species communities together with the invasive A. philoxeroides. Variation partitioning showed that PD contributed more to variation in both A. philoxeroides traits and community indicators than SR. All A. philoxeroides traits and community indicators, except for evenness index, showed a linear relationship with PD. However, only stem length of A. philoxeroides differed between the one‐ and two‐species treatments, and the diversity index of the communities differed between the one‐ and two‐species treatments and between the one‐ and four‐species treatments.
  • Our results showed that in natural or semi‐natural wetlands with relatively low SR, PD may be a better predictor of invasibility than SR. When designing management strategies for mitigating A. philoxeroides invasion, deliberately raising PD is expected to be more efficient than simply increasing species number.
  相似文献   
84.
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.  相似文献   
85.
《Current biology : CB》2020,30(24):4826-4836.e7
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   
86.
87.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   
88.
  • Terminal drought substantially reduces chickpea yield. Reducing water use at vegetative stage by reducing transpiration under high vapor pressure deficit (VPD), i.e. under dry/hot conditions, contributes to drought adaptation. We hypothesized that this trait could relate to differences in a genotype's dependence on root water transport pathways and hydraulics.
  • Transpiration rate responses in conservative and profligate chickpea genotypes were evaluated under increasing VPD in the presence/absence of apoplastic and cell‐to‐cell transport inhibitors.
  • Conservative genotypes ICC 4958 and ICC 8058 restricted transpiration under high VPD compared to the profligate genotypes ICC 14799 and ICC 867. Profligate genotypes were more affected by aquaporin inhibition of the cell‐to‐cell pathway than conservative genotypes, as measured by the root hydraulic conductance and transpiration under high VPD. Aquaporin inhibitor treatment also led to a larger reduction in root hydraulic conductivity in profligate than in conservative genotypes. In contrast, blockage of the apoplastic pathway in roots decreased transpiration more in conservative than in profligate genotypes. Interestingly, conservative genotypes had high early vigour, whereas profligate genotypes had low early vigour.
  • In conclusion, profligate genotypes depend more on the cell‐to‐cell pathway, which might explain their higher root hydraulic conductivity, whereas water‐saving by restricting transpiration led to higher dependence on the apoplastic pathway. This opens the possibility to screen for conservative or profligate chickpea phenotypes using inhibitors, itself opening to the search of the genetic basis of these differences.
  相似文献   
89.
Dispersal capacity in the Mediterranean corn borer, Sesamia nonagrioides   总被引:1,自引:1,他引:0  
Corn (Zea mays L.) borers are the primary target of Bacillus thuringiensis Berliner (Bt) transgenic maize. Management of corn borer resistance to Bt requires information on larval and adult dispersal capacities, a feature that is particularly unknown in Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), the most damaging corn borer in Spain. Larval dispersal was studied over a 3 year period by infesting plants with egg masses and dissecting the neighbouring plants 7, 14, and 32 days later to measure larval dispersal at several ages. The number and age of larvae were recorded in the dissected plants. Only mature larvae dispersed in significant numbers; they moved at least to rows adjacent to those containing the infested plant, and down the row five plants. The percentage of larvae that dispersed from the infested plant was density‐dependent. Adult dispersal was studied with directional light and pheromone uni‐traps over 5 and 3 year periods, respectively. Directional light traps were placed in the margins between Bt and non‐Bt maize fields, half oriented towards each of the two kinds of maize field. Pheromone traps were placed in the Bt and non‐Bt fields at increasing distances (0–100 m) from the border. The numbers of males and females caught in directional light traps were not different in traps oriented towards Bt or non‐Bt fields, but the number of males caught in the third flight in Bt fields was lower than in non‐Bt fields. These results suggest that males from adjacent Bt and non‐Bt fields mate indiscriminately with females emerging in any of the two kinds of maize fields. However, male movement in the third flight may not be sufficient to randomly distribute males between the two fields.  相似文献   
90.
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium that has a significant impact on both human and animal health. It is one of the most common food-borne pathogens responsible for a self-limiting gastroenteritis in humans and a similar disease in pigs, cattle and chickens. In contrast, intravenous challenge with S. Typhimurium provides a valuable model for systemic infection, often causing a typhoid-like infection, with bacterial replication resulting in the destruction of the spleen and liver of infected animals. Resistance to systemic salmonellosis in chickens is partly genetically determined, with bacterial numbers at systemic sites in resistant lines being up to 1000-fold fewer than in susceptible lines. Identification of genes contributing to disease resistance will enable genetic selection of resistant lines that will reduce Salmonella levels in poultry flocks. We previously identified a novel resistance locus on Chromosome 5, designated SAL1 . Through the availability of high-density SNP panels in the chicken, combined with advanced back-crossing of the resistant and susceptible lines, we sought to refine the SAL1 locus and identify potential positional candidate genes. Using a 6th generation backcross mapping population, we have confirmed and refined the SAL1 locus as lying between 54.0 and 54.8 Mb on the long arm of Chromosome 5 ( F  = 8.72, P  = 0.00475). This region spans 14 genes, including two very striking functional candidates; CD27-binding protein ( Siva ) and the RAC -alpha serine/threonine protein kinase homolog , AKT1 ( protein kinase B , PKB ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号